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Abstract  

Some years ago Bonnor presented a solution of  the Einstein-Maxwell equations des- 
cribing the field of a massive source carrying a magnetic dipole. In this paper I present 
an analysis of this solution. Bonnor's solution is interesting because of its close connection 
to the Kerr solution and also because it is not a member of the Weyl electromagnetic 
class. 

Introduction 

It has been long known that there is a close formal similarity between 
stationary exterior solutions of  the Einstein equations and static magnetic 
solutions of the Einstein-Maxwell equations (Bonnor, 1961). This is par- 
ticularly evident for axially symmetric fields, and one finds that the sets of 
equations governing the two cases can be transformed into the other by 
simple complex transformations of  the dependent variables (Perjes, 1968; 
Ward, 1974). Bonnor used this correspondence to derive a solution describing 
a static massive source carrying a magnetic dipole, from the Kerr solution 
(Bonnor, 1966). 

In the realm of static axisymmetric solutions of the Einstei~a-Maxwell 
equations the Bonnor solution stands out because it is not a member of  the 
Weyl electromagnetic class. Because of  this special nature of the Bonnor 
solution, a much deeper analysis than has hitherto appeared in the literature 
is long overdue. One of  the more interesting aspects of this work is the fact 
that there appears to be a close formal connection between the Bonnor 
solution and the field due to two magnetic monopoles of  opposite sign, each 
carrying a positive mass numerically equal to the pole strength, symmetrically 
situated on the symmetry axis. (Geometrically speaking this would be the 
'sum' of two Riessner-Nordstrom e 2 = m 2 particles.) 

The paper is divided into three sections. Section 1 introduces the Bonnor 
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solution and also contains a brief sketch of  the properties of  the solution. 
Section 2 makes use o f  the algebraic invariants o f  the Einstein-Maxwell field 
to try and differentiate between true singularities o f  the field and those due to 
an unfortunate choice o f  coordinates. Section 3 looks at the horizons o f  the 
Bonnor solution and some questions concerning goedesic completeness are 
discussed. In this section specialisation to the symmetry axis o f  the solution 
brings out the dose connection between this solution and the Riessner- 
Nordstrom solutions mentioned earlier. 

S ec t i o n  1 

The metric we are interested in is: 

ds = - ~ (.dR 2 + Z d O : )  - Z sin z 0 d~) 1 + d t  2 

where 

(1.1) 

P =- R 2 - 2 m R  - b 2 cos 2 0 

Q = (R - m) 2 . -  (b 2 + m 2) cos z 0 (1.2) 

Y = - R  2 - b  2 cos 2 0 

Z =- R 2 - 2 m R  - b 2 

and in these coordinates (R, 0, ¢, t) +~ (x 1, x 2, x 3, x °) the electromagnetic 
field is obtained from F ~  = Ke;¢ - K~;a through 

rc~ = (0 ,  O, 2 m b R P  -1 sin 2 0, 0) (1.3) 

where, the semicolon denotes covariant differentiation. 
AsR  -+ oo the metric tends to the Minkowski metric and the R -1 term in 

goo shows that the mass of  the source is 2m. Also, at large distances from the 
source, the electromagnetic potential describes a magnetic dipole of  strength 
2rob. In the latter part o f  this work some attempt is made to try and clarify 
how the source is formed from simpler sources. By consideration o f  the 
symmetry axis alone, we are led to conjecture that the field is produced by 
two magnetic poles o f  strengths - m  and m both with mass m situated on the 
symmetry axis separated by a coordinate distance 2b. While this interpreta- 
tion accounts for the field an observer would experience on the axis and in 
asymptotic regions it is not  clear that this accounts for the field in other 
regions of  space-time. 

The determinant of  the metric is 

y 4 p 4  sin 2 0 
g = - Q3 (1.4) 

The metric displays singular behaviour at Q = 0, P = 0, Z = 0, Y = 0. By 
making the transformation 

p = Z 1 / 2  s inO z = ( R - m )  cosO (1.5) 
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the metric (1.1) goes into 

d s 2  = 

Using this form, a rather long calculation (Ward, 1974) shows that the solu- 
tion has Weyl tensor which is type [1111] in the Penrose notation. 

For m = 0 the metric (1.1) becomes 

( R  E - b 2 COS 2 
ds 2 = -  ~£~-'b~ O) (dR2 + [R2-b2]dO2) 

- (R 2 - b z) sin 2 0 d~b 2 +dt 2 (1.]a) 

which is fiat space-time in prolate spheroidal coordinates. That it is fiat space- 
time is most easily seen from (1.6). This is to be compared with the Kerr 
solution: there, putting mKerr = 0 gave flat space-time in oblate spheroidal 
coordinates. 

It is useful to represent the hypersurfaces o f  interest Q = 0, P = 0, Z = 0, 
Y = 0 (all at t = const.) using these flat prolate coordinates. We note first: 

Z = 0 - + R  =(Rt)_+ = m - + ( m  2 + b 2 )  1/2 

P = 0 -~R  = (R2)+ = m +- (m 2 + b 2 cos 2 0) 1/2 (1.7) 

Q = 0 - + R  =(/{3)+ = m + - ] ( m  2 + b 2 )  1 /2cOs0[  

Y =  0 - ~ R  = (R4)+ = +  lb  cos 0 l 

and for rn > 0 

(RI)+ 7> (/{2)+ 1> (R3)+ > (R4)+ (1.8) 

the equality signs occurring when cos 0 = 1. There are two cases of  interest: 

Case 1. b > 2m > O 
We represent surfaces of  interest in flat polar coordinates (p, z) given by 

taking m = 0 in (1.5), i.e. 

p = (R 2 -- b2) 1/2 sin 0 z = R cos 0 

then 
(a) Y=O-+R =-+ [b cos0[  

Only R = b 0 = 0, rr are represented in these coordinates. We shall see later 
that Y = 0 is singular. Thus Y = 0 gives two singular points on the ends of  the 
'rod'  R = b. Again this is to be compared with the Kerr solution. There the 
surface corresponding to Y = 0 is also singular and is represented in flat space 
oblate spheroidal coordinates by a ring. (The ring of  course bears the same 
relation to oblate coordinates as do the two points at the end of  the rod to 
prolate coordinates.) 

(b) Z=O--."R = m + (m 2 + b 2 )  t/2 
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Z 
Cas / ~ z = 0 (R1) + 

P = 0 (R2) + 

Q = 0 (R3) + 

~ ~ Y = o  

,-p 

j ~ R = const. 

Fig. 1 

Case2 

Z Z 
Z = 0 (R1) + 

= 0 (R2)+ 

Q = o (R3} + 

Y=o  

= 0 (R3)_ 

Fig. 2 
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Only R = (R 1)+ appears on this diagram. 

(c) P = 0 -+ R = m + (m 2 + b 2 coil  8) 1/2 

None of  R = (R 2)- is represented and points for which cos 8 < 
[ 1  - (2m/b)] 1/2 on R = (R2)+ are missing as well. There are two sheets. 

(d) Q = 0 - + R  = m  -+ l(m 2 +b2)  1/2 cos0 [ 

Here R = (R3)-  does not appear and points for which cos 8 < 
[ 1  - (2mb/(m 2 + b2))] 1/2 are also missing. There are two sheets. 
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Case2. m > b > 0  
(a) Y = 0, (b) Z = 0 have the same form as Case 1. 
(c) P = 0. (R2)_ is still missing. (R2)+ is now one closed curve. 
(d) Q = 0. (R3)_ now makes an appearance and joins continuously onto 

the (R3)+ branch. The (Ra)+ branch has a cusp at 8 = ½zr. 

I shall not dwell on these diagrams too long. We shall see in a later para- 
graph that these diagrams do not give a faithful representation of  the geometry. 
(The opposite effect occurs in the Kerr solution.) For example, the proper 
circumference o f  the Z = 0 surface (at const, t, R)  is zero. 

Section 2 

Algebraic Invariants o f  the Bonnor Solution 
We shall use these to try and differentiate between true singularities and 

those which are only due to a bad choice of  coordinates. 
To evaluate the invariants the tetrad components of  the Riemann, Maxwell 

and permutation tensors are required. I f  e~a denotes our tetrad (capital Roman 
letters denote tetrad components) then the tetrad components o f  any tensor 
T ~ . . .  are TABC... where 

T A l c . . .  = . . 

B = 5~ then any contraction over tensor indices is equivalent to and since e A e a 

a contraction over tetrad indices. 
We can arrive at the tetrad components o f  the Riemann tensor directly by 

using the method of  differential forms (Israel, 1970). Thus choose 1-forms 
0 A by 

8o=P--dt 8 1 _ YP 02= YP 83 Z1/2ys inSdf  ) 
y Q 3/2Z1/2 dR ~ dO = P 

These 1-forms define a tetrad by 8 A = e A dx giving 

e~= Q3/2Zl/z,O,O, e~ ~ ,Q3/2 ,0 ,0  
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(o o) o (o e~= _ sinO, e °=  ,O,O, Py) 

Then using Cartan's equations (Israel, 1970) we easily find the tetrad com- 
ponents of the Riemann tensor are: 

R°I lO - Q 3/2Z1/2 yp2 A,I +A2 + BC 

Q 3/2 

R°12o = ---~ A,2 + AB + DB 

Q 3/2 
R ° 2 0  = --y-ff B,2 + B 2 - AD 

R°330 = AE + BF 
Q 3 / 2  Q3/2z1/2 

R1221 = - ~ C  2 yp  D,I + C 2 + D  2 

Q3/2Z1/2 
R 1313 - YP E,1 -- E 2 - CF 

R 1323 - Q 3/2 yp  E,2 - EF - DF 

R2323 _ Q3/2 yp F,2 - F 2 + DE 

also from the formula F AB = e~ egF °~ we find 

where 

F 31 _ Q3/2 sin 0 y2p2 ( R2 + b2 c°s20)mb 

Z1/2 Q 3/2 
F 32 = 4Rmb cos 0 y2p2 

Q3/2Z1/2 Q3/2Z1/2 
A =  p2 y P , 1 -  py2 Y,1 

Q3/2 Q3/2 
B :Ufe2- r2 

Q3/2 Q3/2 3QI/2 
C = - - ~  Y,2 +~p-~P,2 - 2 - - ~ Q , 2  

(2.1) 
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Q a/2 z~/2 Q 3/2 zl/2 3Q 1/2 zl/2 
D= y2p Y,i - y p ~  P,1 ~ 2~YP- Q,1 

Q3/2 Z1/2Q3/2 Z1/2Q3/2 
E=2ypz  Z,a + ~ Y ,1-  p2y P,I 

O 3/2 Q 3/2 Q 3/2 
F =  ~ y y  cot 0 + - ~  r,2 -p2yP,2 (2.2) 

Now it is easy to show (Israel, 1970) for the particular tetrad we have 
chosen that the tetrad components of  the permutation tensor ~¢7~ are 

1?ABCD = +- ~ABCD 
where eABCO is the four-dimensional Levi-Civita symbol. 

The algebraic invariants of  an Einstein-Maxwell field have been given in 
spinor form by Penrose (1960). It is a straightforward matter to put these in 
tensor form. However, for our purposes the explicit form of these invariants 
is not important. We need only note that the invafiants only involve products 
of the Riemann, Maxwell and permutation tensors, and so in tetrad form only 
involve products of the tetrad components of the Riemann and Maxwell 
tensors. Also, since for our particular tetrad, tetrad indices are raised and 
lowered with the Minkowski metric, it follows that if the tetrad components 
of the Riemann and Maxwell tensors are well behaved then so are all the 
invariants. 

The invariant K (here K = Fc~F c~) 

K = FalF31 + F32F32 

_ 4Q 3 
y4ffg [ sin20(R2 + b2 cos 2 0) + 4 cos 20R2Z] 

Thus the space-time is singular at Y = 0. Space-time is also singular at P = 0 
sin 0 ~- 0. 

I will now show that the invariants are well behaved on the Z = 0 and 
Q = 0 (Q ~ Y) surfaces. For this, all we have to show is that the,tetrad com- 
ponents of the Maxwell and Riemann tersors are well behaved. 

Noting (1.8) it is straightforward to show that the following behaviour of 
A - F holds as Z -+ 0 (sin 0 v ~ 0) 

[,~ 3/2 Q 3/2 ) 
A,I -~- 1Z-1/zl~-"---Ptpzy ,1 -py2  Y,1] Z,1 +0(zl/2) A,2 = O(Z1/2) 

B A =O(1)  B,2 =O(1)  C,1 = O ( I )  C ,2=0(1 )  

D,1 = _½z_l/2103/2 Q3/2 3Q1/2 ) [ ~  Y,1 + - ~  e ,1-  - ~  a,l Z,1 +0(zl/2) 
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1 Z-3/2Q 3/2 
D,z = O(Z 1/2) E,1 = - 4 PY  (Z'l)2 + 0(Z-1/2) 

(301/2 Q 3/2 Q 3/2 ) 
_ 1 Z - l ~ 2  I ~  ,q _ _ _ ~ p , 2 1  Z ,  1 + 0 ( 2 1 / 2 )  E,2 - 7. ~ 2 YP ~z,2 - ~  Y,z 

I 

F,a = O( l )  F,2 = O( l )  (2.3) 

These expansions imply the following behaviour on the tetrad components of 
the Riemann tensor: 

R°Ilo = O(1) R°12o = O(Z 1/2) 

R0330 = O(1) R1221 = O(1) 

1 Z-1/2Q 3/2 [3Q 1/2 
R1323 - 2 e y  ~ - ~ - ~  Q,2 

R°220 = O(1) R2323 = O(1) 

R1313 =O(1)  

Q3/2 2Q3/2 ] 
+ -if-y-- cot 0 - p--~-~ P2~ z,1 + o(1)  

(2.4) 

So the only component which gives trouble is the one with three different 
indices R1323. However, substituting for P, Y and Q and noting that 

P = Z + b 2 sin 2 0 Q = Z + (m 2 + b 2) sin 2 0 

it is easily seen that 

3Q1/2 Q3/2 2Q3/2 Q1/2 cot 0 [Z 2 + Z sin 20(4m 2 + b2)] 
2YP Q'2 +--Y-ff -c°tO - P-P-~ P'2= p 2 y  

so R 1323 = O(1). Thus all the tetrad components of  Riemann and Maxwell 
tensors are well behaved on the surface Z = 0 (sin 0 4=. 0). It is obvious from 
(2.1) that the tetrad components are weU behaved on the surface Q = 0 
(Q =/= Y, sin 0 4= O). 

A more detailed calculation involving (2.4) shows that nothing untoward 
happens to the tetrad components of  the Riemann and Maxwell tensors as the 
axis sin 0 = 0 is approached on the surface Z = 0. Other approaches to Z = 0 
sin 0 = 0 seem far too complicated to took at in any detail. 

Thus a study of the invariants have provided a fair deal of  information. 
We have that the space-time is singular at Y = 0 ;P  = 0 sin 0 ¢ 0 and no 
unreasonable behaviour (from the point of view of the invariants) occurs 
on the surfaces Z = 0; Q = 0 Q ¢ Y. Of course, for the last two cases we 
cannot conclude that the space-time reflects the regularity displayed in the 
invariants. (There are many counter examples, cf. Sackfietd (1972) and Ward 
(1974).) 

Section 3. Horizons 

The Bormor solution admits two obvious Killing vectors 

~ = (0, 0, 1,0) ~ = (0 ,0 ,0 ,  1) 
t 

(3.1) 
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Define coa~ -= ~ [a~]  then Hawking & Ellis (1973) locally characterise the 
¢ t 

horizont  as those points for which 6o~wa~ = 0 (off  the axis sin 0 = 0). For 
stationary metrics admitting Killing vectors (3.1) 

WaPc°~ = g00g33 -- g20 = Z sin 2 0 for Bonnor (3.2) 

So off  the axis Z = 0 represents the horizon. This surface, is o f  course, null 
ga~Z,aZ,~ = 0 on Z = 0. (As a slight digression we note that if Weyl-type 
coordinates are used, cf. (1.5), then this essentially means that one chooses 
radial coordinate p2 = goog33 - -  g~o and so the horizon will seem to be part 
of  the axis itself. Thus any parts o f  space-time within the Killing horizon will 
not appear in Weyl coordinates. Cf. the Schwarzschild solution where the 
horizon r = 2m in the usual coordinates appears as a rod on the axis in Weyl 
coordinates.) 

From the point of  view of  the invariants Z = 0 seems to be non-singular. 
Is it compact? An indication that it is follows from a computation of  the 
proper surface area o f  the surface. 

The proper surface area o f R  = const., t = const, surfaces is given by the 
formula: 

7r 2rr 

A = ~ sin 0 dO d~ 

o 0 

o 

= _47rZ 1/2 f Y~ sin 0 dO 

= 47rZ 1/z 

1 

f (R z - b2xZ) 2 dx 
[(R - m) 2 - (M 2 + b2)x2] 3/2 

and after a long calculation we find 

A=47r ( R ~ / )  2 2 ( m 2 + b 2 ) - ( m 2 + b 2  ) 2R2b 2 _ 2 ( m 2 + b 2 )  

t m 2b'}{ ( -4~r(m2 +b2)3/2 2R2b "-f-(m-f +bZ) sin -1 ~ - - - ~  ]J 

(3.3) 
t This, for s ta t ionary ax i symmetr ic  space-times which are regular predictable (no 

naked singularities) in which  w[c~#;3,wp]a = 0. This last condit ion is t rue for vacuum 
Einstein-MaxweU fields. 



282 J.P. WARD 

So the proper surface area o f Z  = 0 is 

Az=o = 16rrm 2 (R1)2 
(m 2 + b2 ) (3.4) 

So apparently the Z = 0 surface is compact. However, it is obvious from (1.1) 
that the proper circumference of  the Z = 0 surface is zero. This result with 
(3.4) indicates some sort o f  singular behaviour at the poles and consequently 
the Z = 0 surface is not  a regular horizon. However, it is still not clear to me 
whether or not the Bonnor solution has naked singularities. This result also 
disproves the schematic view of  the Z = 0 surface we had earlier and suggests 
that the Weyl coordinates given in (1.5) give a more realistic description o f  
the geometry. 

Geodesic Completeness 
The geodesic equations show incompleteness at all the surfaces Q = 0, 

Z = 0 , P  = 0, and Y= 0. Because o f  the rod-like nature o f  the Z = 0 surface 
there does not seem much point in trying to extend these incomplete geodesics 
through the Z = 0 surface (and thus extendabillty through the Q = 0 surface 
loses much interest). 

When restricted to the axis sin 0 = 0, the metric (1.1)becomes 

01 =-[ 
(3.5) 

where cos 2 0 = 1. 
I leave the functions of  0 in the metric to avoid confusion as to which part 

o f  the axis, either 0 = 0 or 0 = rr, a given value of  R refers. Again we only con- 
sider values of  R for which R > b (this since R = b 0 = 0, 7r singular). That 
(3.5) is singular at R = b 0 = 0, rr can easily be seen by examining the intrinsic 
Gaussian curvature o f  the two-surface (Walker, 1970) 

-21 dR ----~d2F F = I R2 -~--'--b2-c-~s£-O- 2mR - b 2 cos 2 0/2 G = j cos 2 0 = 1 

we find 

4m 
G = (R - b 2 cos 2 0) 4 ( - R s  + 3mR4 - 2bR + 8mbR + 3b4R + mb 4) 

So the surface is singular at R = b, 0 = O, 7r. To show that the surface is 
2 2 regular at R - 2mR - b = 0 introduce a null coordinate by 

dR 
du = - ~  + dt 

then (3.5) becomes 

ds 2 = F du 2 - 2 du dR (3.6) 
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which is non-singular at F = 0. The geodesic equations for (3.6) are 

du 1 
dX'- F (E +- (E 2 - Fe)  1/2) 

dR__= _+ (E 2 _ Fe)a/2 
at,  
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(3.7) 

R - 2 m R  + e 2 } 
+ R2  d t  2 (3.8) 

which, when restricted by sin 0 = 0 and e 2 = m 2, becomes 

ds 2 = - dR 2 + d t  2 (3.9) 

and defining a null coordinate by 

du = dR + d t  

(3.9) becomes 

ds = du 2 - 2 du dR (3.10) 

Thus the correspondence between (3.6) and (3.10) is clear. I f  we concentrate 
on one branch of  the axis at a time then the coefficient o f d u  2 in (3.6) has a 
repeated root at R = rn + (m 2 + b2) 1/2 and a singularity at R = b. The same 
characteristics are displayed in (3.10). Because of  this, the same construction 

2}_ 1 ds 2 = R 2 - 2 mR + e 
- R2 dR 2 - RZ(dO z + sin 2 0 d~ 2) 

where X is an affine parameter and e = 1, - 1 , 0  represents time-like, space-like 
and null geodesics respectively. E is a constant representing the energy in the 
time4ike case. 

t f d u / d X ,  dR/clX were bounded for all R then this two-dimensional space- 
time would be geodesically complete because then each geodesic may be 
continued to infinite values of  the affine parameter. From (3.7) we see that 
dR/dX is bounded for all R 4= b (incompleteness at R = b need not worry us 
as the space.time is singular there). However, du/dX is unbounded at 
R 2 - 2 m R  - b 2 = 0 which is a regular part of  the space-time. To see that the 
space-time can be analytically continued through these points one need only 
note that the null form of  the metric (3.6) is, in its qualitative features, 
essentially the same as the null form of the symmetry axis of  the e 2 = rn 2 
Riessner-Nordstrom solution given by Carter (1966). The Riessner-Nordstrom 
solution is 
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as used by Carter to extend (3.10) through R = m can be used to extend (3.5) 
through R = m + (m 2 + b2) I/2 on either branch of  the axis 0 = 0, 7r. Thus the 
Penrose-Carter diagram given for the symmetry axis o f  the Riessner-Nordstrom 
e 2 = m 2 solution will suffice, with only minor modifications as to the position 
of  the singularity and the horizon, to describe the global features o f  each 
branch of  the symmetry axis o f  the Bonnor solution. 

Other similarities with the e 2 = m 2 Riessner-Nordstrom solution follow 
from this. For example both singularities of  (3.9) and (3.5) are repulsive in 
the sense that no time-like geodesic can hit them. This is well known for the 
Riessner-Nordstrom solution and is easy to show for the Bonnor solution. 
From (3.7) asR ~ b, i.e. F-+  ~ ,  then we must choose e = - 1 , 0  to ensure 
dR/dX is real. This implies that no time-like geodesic can hit the singularity. 
We also note that (3.5) can be written 

( 

ds 2 = _ 11 

+{1 
with cos 2 0 = 1. 

-2 
m m dR 2 

R - b c o s 0  R + b c o s 0  

;'T/ m } 2 dt  2 (3.5a) 
R - b c o s O  R + b c o s O  

Thus close to R = b, 0 = 0 or 0 = 7r this metric is essentially the same as an 
e 2 = rn 2 Riessner-Nordstrom solution close to its singularity at R = 0. 

Because o f  all these similarities with the Riessner-Nordstrom solution one 
is led to conjecture that the Bonnor solution (as regards the symmetry axis 
at least) has as its sources two Riessner-Nordstrom e 2 = m 2 particles at the 
ends o f  the rod R = b (cf. diagram in earlier part o f  this section). We must 
look at the electromagnetic field to determine both the sign and the nature 
of  the parameter e. (We remember that the geometry is independent o f  the 
sign of  the charge and also o f  its nature. This last remark means that the 
parameter e z in the Riessner-Nordstrom solution can equally welt describe 
a magnetic pole.) 

The electromagnetic field as measured by an observer on the axis is 
given by F 32 in (2.1). 

4R cos 0 mb m m /-/R = F 3 2  = 
(R 2 --  b 2 cos  2 0 )  2 = (R - b cos  0 )  2 (R + b cos  0 )  2 

at cos 2 0 = 1 

that is, the field is produced (where F 32 is singular) by two magnetic poles o f  
strengths rn and - m  at R = b, 0 = 0, 7r respectively. 

So if we restrict our considerations to the symmetry axis alone, it is fairly 
reasonable to suppose that the exterior field is produced by two magnetic poles 
of  strengths m and - m  both carrying a mass m and separated by a coordinate 
distance 2b at the ends of  the rod R = b. If  this simple idea is accepted for the 
full space-time it is easily seen that it accounts for the field at large distances 
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from the sources: that  is the field will refer to a mass 2m, no magnetic poles, 
and a magnetic dipole o f  strength 2mb. There is still the problem of  how the 
two poles are kept  apart.  Some sort o f  strut is required and it is not  clear how 
this manifests itself in the full solution. This simple interpretat ion does not 
throw any light on the singular surface P = 0. 
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